يرتبط القانون الأول للديناميكا الحرارية بالحفاظ على الطاقة ، بينما يجادل القانون الثاني للديناميكا الحرارية بأن بعض عمليات الديناميكا الحرارية غير مسموح بها ولا تتبع القانون الأول للديناميكا الحرارية.
كلمة " ديناميكا حرارية " مشتقة من الكلمات اليونانية ، حيث تعني "Thermo" الحرارة و "ديناميكيات" تعني القوة. إذن الديناميكا الحرارية هي دراسة الطاقة الموجودة في أشكال مختلفة مثل الضوء والحرارة والطاقة الكهربائية والكيميائية.
الديناميكا الحرارية هي جزء حيوي للغاية من الفيزياء والمجالات ذات الصلة مثل الكيمياء وعلوم المواد وعلوم البيئة ، إلخ. وفي الوقت نفسه ، يعني "القانون" نظام القواعد. لذلك تتعامل قوانين الديناميكا الحرارية مع أحد أشكال الطاقة التي هي الحرارة ، وسلوكها في ظروف مختلفة تتوافق مع العمل الميكانيكي.
على الرغم من أننا نعلم أن هناك أربعة قوانين للديناميكا الحرارية ، تبدأ من قانون الصفر ، القانون الأول ، القانون الثاني والقانون الثالث. لكن الأكثر استخدامًا هو القانون الأول والثاني ، وبالتالي في هذا المحتوى ، سنناقش ونميز بين القانونين الأول والثاني.
رسم بياني للمقارنة
أساس المقارنة | القانون الأول للديناميكا الحرارية | القانون الثاني للديناميكا الحرارية |
---|---|---|
بيان | لا يمكن خلق الطاقة ولا تدميرها. | لا يتناقص الإنتروبيا (درجة الاضطرابات) لنظام معزول أبدًا بدلاً من ذلك. |
التعبير | ΔE = Q + W ، يستخدم لحساب القيمة إذا كانت هناك كمية معروفة. | ΔS = ΔS (نظام) + ΔS (محيط)> 0 |
يعني التعبير ذلك | التغيير في الطاقة الداخلية للنظام يساوي مجموع تدفق الحرارة إلى النظام والعمل الذي يقوم به النظام من قبل المحيط. | التغيير الكلي في الإنتروبيا هو مجموع التغيير في إنتروبيا النظام والمحيط الذي سيزداد لأي عملية حقيقية ولا يمكن أن يكون أقل من 0. |
مثال | 1. المصابيح الكهربائية ، عندما يحول التفتيح الطاقة الكهربائية إلى طاقة ضوئية (طاقة مشعة) وطاقة حرارية (طاقة حرارية). 2. تقوم النباتات بتحويل ضوء الشمس (الطاقة الخفيفة أو المشعة) إلى طاقة كيميائية في عملية البناء الضوئي. | 1. تحول الآلات الطاقة المفيدة للغاية مثل الوقود إلى طاقة أقل فائدة ، والتي لا تساوي الطاقة التي يتم استهلاكها أثناء بدء العملية. 2. يستخدم السخان في الغرفة الطاقة الكهربائية ويعطي الحرارة للغرفة ، ولكن الغرفة في المقابل لا يمكنها توفير نفس الطاقة للسخان. |
تعريف القانون الأول للديناميكا الحرارية
ينص القانون الأول للديناميكا الحرارية على أن " الطاقة لا يمكن خلقها أو تدميرها " ولا يمكن تحويلها إلا من حالة إلى أخرى. يُعرف هذا أيضًا بقانون الحفظ.
هناك العديد من الأمثلة لشرح البيان أعلاه ، مثل المصباح الكهربائي ، الذي يستخدم الطاقة الكهربائية ويتحول إلى طاقة الضوء والحرارة.
تستخدم جميع أنواع الآلات والمحركات بعض أنواع الوقود أو غيرها من أجل أداء العمل وإعطاء نتائج مختلفة. حتى الكائنات الحية ، تناول الطعام الذي يتم هضمه ويوفر الطاقة لأداء الأنشطة المختلفة.
ΔE = Q + W
يمكن التعبير عنها بالمعادلة البسيطة مثل ΔE ، وهو أن التغيير في الطاقة الداخلية للنظام يساوي مجموع الحرارة (Q) التي تتدفق عبر حدود المحيط ويتم العمل (W) على نظام المحيطة بها. ولكن لنفترض أنه إذا كان تدفق الحرارة خارج النظام ، فإن "Q" سيكون سالبًا ، وبالمثل إذا كان العمل تم بواسطة النظام ، فإن "W" سيكون أيضًا سالبًا.
لذا يمكننا القول أن العملية برمتها تعتمد على عاملين ، هما الحرارة والعمل ، وتغيير طفيف في هذين سيؤدي إلى تغيير في الطاقة الداخلية للنظام. ولكن كما نعلم جميعًا أن هذه العملية ليست تلقائية جدًا ولا تنطبق في كل مرة ، مثل الطاقة لا تتدفق تلقائيًا من درجة حرارة منخفضة إلى درجة حرارة أعلى.
تعريف القانون الثاني للديناميكا الحرارية
هناك عدة طرق للتعبير عن القانون الثاني للديناميكا الحرارية ، ولكن قبل ذلك يجب علينا أن نفهم لماذا تم تقديم القانون الثاني. نعتقد أنه في العملية الفعلية للحياة اليومية ، يجب أن يفي القانون الأول للديناميكا الحرارية ، لكنه ليس إلزاميًا.
على سبيل المثال ، ضع في اعتبارك لمبة كهربائية في غرفة ستغطي الطاقة الكهربائية إلى حرارة (حرارية) وطاقة ضوئية وستضيء الغرفة ، لكن العكس غير ممكن ، إذا قدمنا نفس كمية الضوء والحرارة المصباح ، سوف تتحول إلى طاقة كهربائية. على الرغم من أن هذا التفسير لا يعارض القانون الأول للديناميكا الحرارية ، في الواقع ، فإنه غير ممكن أيضًا.
وفقًا لبيان Kelvin-Plancks "من المستحيل على أي جهاز يعمل في دورة ، ويتلقى حرارة من خزان واحد ويحوله إلى 100٪ في العمل ، أي لا يوجد محرك حراري يتمتع بالكفاءة الحرارية بنسبة 100٪" .
حتى كلوسيوس قال إنه "من المستحيل بناء جهاز يعمل في دورة ونقل الحرارة من خزان درجة حرارة منخفضة إلى خزان درجة حرارة عالية في غياب عمل خارجي".
لذا ، من البيان أعلاه ، من الواضح أن القانون الثاني للديناميكا الحرارية يفسر عن الطريقة التي يتم بها تحويل الطاقة في اتجاه معين فقط ، وهو غير واضح في القانون الأول للديناميكا الحرارية.
القانون الثاني للديناميكا الحرارية المعروف أيضًا باسم قانون زيادة الانتروبيا ، والذي يقول أنه بمرور الوقت سيزداد الانتروبيا أو درجة الاضطرابات في النظام دائمًا. Thake مثال على ذلك ، لماذا نشعر بالفوضى أكثر ، بعد بدء أي عمل مع جميع الخطط مع تقدم العمل. لذلك ، مع زيادة الوقت ، تزداد الاضطرابات أو الفوضى.
هذه الظاهرة قابلة للتطبيق في كل نظام ، أنه باستخدام الطاقة المفيدة ، سيتم التخلي عن الطاقة غير القابلة للاستخدام.
ΔS = ΔS (نظام) + ΔS (محيط)> 0
كما هو موضح سابقًا ، فإن delS التي تمثل التغيير الكلي في الإنتروبيا هي مجموع التغيير في إنتروبيا النظام والمحيط الذي سيزداد لأي عملية حقيقية ولا يمكن أن يكون أقل من 0.
الاختلافات الرئيسية بين القانونين الأول والثاني للديناميكا الحرارية
فيما يلي النقاط الأساسية للتمييز بين القانونين الأول والثاني للديناميكا الحرارية:
- وفقًا للقانون الأول للديناميكا الحرارية ، "لا يمكن إنشاء الطاقة أو تدميرها ، لا يمكن تحويلها إلا من شكل إلى آخر". وفقًا للقانون الثاني للديناميكا الحرارية ، التي لا تنتهك القانون الأول ، لكنها تقول أن الطاقة التي تتحول من دولة إلى أخرى ليست مفيدة دائمًا و 100 ٪ على أنها مأخوذة. لذلك يمكن القول أن "إنتروبيا (درجة الاضطرابات) لنظام معزول لا تتناقص أبدًا بل تزداد دائمًا".
- يمكن التعبير عن القانون الأول للديناميكا الحرارية على النحو ΔE = Q + W ، ويستخدم لحساب القيمة ، إذا كان هناك أي كمية معروفة ، في حين يمكن التعبير عن القانون الثاني للديناميكا الحرارية كـ ΔS = ΔS (نظام) + ΔS ( محيط)> 0 .
- تشير التعبيرات إلى أن التغيير في الطاقة الداخلية للنظام يساوي مجموع تدفق الحرارة إلى النظام والعمل المنجز على النظام من قبل المحيط في القانون الأول. في القانون الثاني ، التغيير الكلي في الإنتروبيا هو مجموع التغيير في إنتروبيا النظام والمحيط الذي سيرتفع لأي عملية حقيقية ولا يمكن أن يكون أقل من صفر.
استنتاج
في هذه المقالة ، ناقشنا الديناميكا الحرارية ، التي لا تقتصر على الفيزياء أو الآلات مثل الثلاجات والسيارات والغسالات ولكن هذا المفهوم ينطبق على العمل اليومي للجميع. على الرغم من أننا ميزنا هنا أكثر قانونين للديناميكا الحرارية إرباكًا ، كما نعلم ، هناك قانونان آخران ، يسهل فهمهما ولا يتعارضان كثيرًا.